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Abstract—Unmanned Aerial Vehicles (UAVs) are already part
of everyday life as they are commonly used for disaster response,
industrial applications, and smart farming. Resilient and flexible
communication is key for the operation of UAVs themselves as
well as many applications realized using them, e.g., gathering
of data from Internet of Things (IoT) sensors without a direct
uplink. Realizing new ideas, optimizations, and what-if analyses
are usually lengthy processes to get from theoretical models to
the actual real-world implementation. We propose an integrated
testbed using emulation, where actual implementations can be
evaluated in virtual environments that also simulate the network
connectivity. Through the use of a software stack similar to
actual UAVs that is built around Linux and the PX4 flight
controller, we allow realistic prototyping, automated experiments
and interactive missions. Additionally, we enable Hardware-in-
the-Loop integration through a wideband Software Defined Radio
(SDR)-based channel emulator to experiment with new radio
links for more robust UAV control in challenging environments.

Index Terms—Simulation, Network Emulation, Automated
Evaluation, SDR, UAV.

I. INTRODUCTION

Remote-operated and autonomous UAVs play an increas-
ingly important role in fields such as smart agriculture, in-
dustrial applications, or disaster responses. Having robust and
reliable means of communication for such applications is
crucial. Thus, many researchers work on improved algorithms
and new use-cases for UAVs in various settings. Bringing
this research to actual prototypes or real-world products is
hard, as conducting experiments and large-scale studies with
actual hardware is very time-consuming, plus flying drones
is heavily regulated in most countries. Therefore, people
resort to evaluations of theoretical models or simulations, even
though these approaches cannot always be carried over to
actual implementations. Also, there are many simulators to
model the flight behavior in a physical world with a proper
flight controller as Software-in-the-Loop (SITL). Here, the
weak point that is often overlooked is the communication
link between the ground station and the UAV or from the
UAV to other entities in the mission area. In the field of
network simulations, many approaches exist that range from
theoretical models to testbeds with emulated nodes and real
network code driving the simulation. The motivation for using
simulated testbeds can be manifold. For some the interaction
and communication between UAVs and other nodes, e.g., IoT
devices, people on the ground or Unmanned Ground Vehicles
(UGVs) is the focus. To improve the actual UAV control, the

Fig. 1. Overview of the SUN testbed.

simulation of the radio link to the flight controller is most
important. Furthermore, some applications require a proper
simulation of the physical world, including various obstacles
or effects such as weather. Common simulators focus only on
a subset of these features, limiting their use to specific areas.

In this paper, we present a Simulated UAV Network (SUN)
testbed that brings together physical world simulation, with
emulated ground stations, actual flight controllers, and various
ways to simulate the effects of network links in different
scenarios as shown in Figure 1. Our solution is built around
the core network emulator (coreemu) [1] to connect virtual
nodes as well as physical ones. Furthermore, we integrated
the PX4 flight controller with all its flight systems and the
Gazebo world simulation. Besides the basic Wireless LAN
(WLAN) model from coreemu and the optional support for
advanced radio links using the Extendable Mobile Ad-hoc
Network Emulator (EMANE) [2], we also integrated a wireless
channel emulator, which uses SDRs as a Hardware-in-the-
Loop solution to work on next-generation wireless links for
UAV operations. Everything is put together in a portable and
reproducible way using Docker containers.

In this paper, we present the following contributions:

• An accessible emulation environment 1 for complex UAV
applications with integrated state-of-the-art UAV flight
controller, physics simulation, and network emulation.

• A wideband, bidirectional, SDR-based channel emulator
for hardware-in-the-loop evaluation of wireless links.

• A flexible experiment setup, suited for interactive as well
as automated evaluation of complex scenarios with UAVs
and other virtual/physical nodes.

1https://github.com/LOEWE-emergenCITY/sun
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II. RELATED WORK

Prior research has focused on various very specific aspects
of UAV simulations, with also communication networks in
mind. Often, discrete event simulators are combined with a
flight controller or general flight-specific mobility patterns.

AirMobiSim [3] is a simulator for UAV-specific mobility
models that can be combined with discrete event simulators
like OMNeT++ for wireless communications. Using a high
level of abstraction, it is possible to simulate and evaluate large
scenarios. Yet, there is a disconnect between the simulated
world and real-world experiments, as both the UAV mobility
model and the simulation models for wireless communication
are designed specifically for the corresponding simulators.
Similarly, FlyNetSim [4] combines the ArduPilot flight con-
troller with the ns-3 network simulator. Leading to a solution
similar to ours but without support for a human-operated
ground station, no separation of virtual nodes through con-
tainers, and no integration of Hardware-in-the-Loop (HITL)
SDRs. The built-in SITL simulator of Ardupilot, which is
based on the FlightGear simulator is not built to simulate
complex scenarios involving ground robots, walking humans
or taking sensor measurements like camera pictures or heat
detection. Park et al. [5] also use ns-3 but focus more on time-
synchronization issues between flight and network simulation.
Also, their main use-cases are automated multi-UAV missions
and not highly interactive scenarios or ones involving other
simulated/physical nodes in the virtual world. VENUE [6] is
another project focused on multi-UAV simulation and built
using ns-3 plus Linux containers to separate nodes. Here, no
flight controller or physical world simulation are integrated
as the main target of the simulator are pure Flying Ad Hoc
Networks (FANETs) and not the UAV control channels.

Besides UAV-centric network simulations, we also consider
wireless testbeds relevant for our use-case, as we integrate an
SDR-based channel emulator to evaluate the impact of the
wireless link on the performance of the Unmanned Aerial
System (UAS). Colosseum [7] is the world’s largest wireless
network emulator. The enormous engineering effort invested
in the setup, highlights the importance to evaluate wireless
technologies in an emulated tested. Especially, the ability to
reproduce channel conditions and study different technologies
over the same channels makes Colosseum an important tool for
wireless research. We adopt the strategy in our testbed, albeit
with a much smaller setup, focusing on a single UAV link.
Yet, using the same hardware platform as Colosseum (the Ettus
Research X310), we are able to expand the wireless emulation
in future extensions of the testbed. AERPAW [8] is a closely
related project that studies the use of UAVs in 5G networks.
Like our testbed, it uses emulation to test, evaluate, and
integrate the components of UASs. Being a communication-
centric project, AERPAW considers various methods to model
wireless communications, including capable commercial em-
ulators or Colosseum. However, in contrast to AERPAW,
our testbed architecture is more accessible, lightweight and
platform-independent, requiring only affordable and widely

Fig. 2. Overview of SUN components.

available lab equipment. Additionally, we focus on a realistic
simulation of complex UAV-tasks like in disaster response. We
are capable of incorporating a plethora of different sensors and
human interaction into our simulated scenarios.

III. APPROACH

A general overview of the architecture of SUN can be
seen in Figure 2. To achieve maintainability and modularity,
we separated the different components in their own Docker
containers. In the following, we are going to give details on
the various components used in SUN.

A. The Network

Our requirements for the network layer were real-time
network emulation with the ability to adapt parameters such
as jitter, delay, bandwidth, and communication range. Further-
more, the ability to have complex RF models for increased
realism is needed for some scenarios. Besides the UAV and
a ground station, we also want the ability to simulate other
nodes, e.g., IoT sensors on the ground or people roaming the
area. Thus, we need virtual nodes that can run standard Linux
software and communicate with each other. As we not only
need the network topology for complex scenarios but also
want to automate node behavior, start various services, and
collect metrics for evaluation, we used coreemu-lab2 [9] as our
foundation. It provides an easy and portable environment for
reproducible network experiments, export of performance met-
rics, and automated plotting. Coreemu itself can have nodes
as Linux namespaces or Docker containers in the simulation
but can also bring in other machines through host network
interfaces, e.g., vlan or tap, into the simulated environment.
All nodes can be moved and rearranged interactively using
core-gui and shells for interaction can be spawned. The whole
simulation can also be controlled via a gRPC interface. Thus,
the virtual nodes can be moved by an external process on
another machine. This mechanism is used to update the UAV
position based on data from the simulated drone environment.

2https://github.com/gh0st42/coreemu-lab
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B. The UAV and the Surrounding World

The foundation of our simulated UAV is the PX43 flight
controller, which can be compiled to be used as SITL. This
open-source autopilot is also commonly found on many drones
used in the real world. We run it in a physical world simulation
provided by Gazebo4. Gazebo not only has flight dynamics
but includes obstacles, sensors, weather and is also used to
simulate disaster response5. It is, therefore, the perfect candi-
date to simulate UAVs in realistic and complex missions. To
speed up the startup times of SUN, we pre-compile anything
necessary for the provided simulation scenario, including the
world map and any assets needed, into the Docker images.
Furthermore, we developed tools to link the actual positions
from Gazebo to the network emulator. While a position could
also be extracted from the flight controller, the one from the
physical world simulation is the ground truth, independent of
(simulated) GPS signals or other sources of interference.

C. The Ground Station

As most UAVs use the MAVLink6 protocol, we settled on
the open-source flight control and mission planning software,
QGroundControl7, in our ground station docker container.
We pre-configured it to connect to our virtual UAV either
through the emulated direct link or routed via EMANE or SDR
interfaces. Additional software needed on the ground station
can easily be added to the container and is automatically routed
through the virtual network to the UAV.

D. The Integration of Physical Communication

Core of the wireless-in-the-loop emulation is a Field-
Programmable Gate Array (FPGA)-based, bidirectional, wide-
band channel emulator. It is implemented with an Ettus
Research X310, a commercially available off-the-shelf SDR
frontend that is also used in Colosseum, the world’s largest
channel emulator [7]. The X310 allows implementing SDR ap-
plications on a PC but also comes with ample FPGA resources
that can be utilized through the RFNoC framework [10].

The channel emulation is implemented through a 41-tap
complex FIR filter on the X310 that models the channel’s
impulse response. The whole data path is on the FPGA, i.e.,
the samples are not sent to the host PC, which would limit
the usable bandwidth and introduce delay and jitter. While the
RFNoC framework comes with an FIR filter, it only supports
real-valued taps. To model the complex baseband channel
impulse response, we, therefore, implemented a complex filter
using two real filters as depicted in Figure 3. We duplicate the
sample stream, passes it through two real-valued filters, and
merge the streams, realizing the complex multiplication.

A similar filter is used in both directions to allow bidirec-
tional communication (cf. Figure 1). While the data path is
completely on the FPGA, the filter taps can be configured

3https://px4.io
4https://gazebosim.org
5https://rescuesim.robocup.org
6https://mavlink.io/en/
7http://qgroundcontrol.com

during runtime through existing RFNoC APIs. Therefore,
we can adapt the channel during runtime depending on the
position of the UAV in the Gazebo scenario. Adjusting the
taps, we can realize relevant channel models, ranging from
empirically determined, frequency-flat models that only define
an attenuation to geometric models that define multi-path com-
ponents, resulting in frequency-selective fast-fading channels.

In the current testbed, we use the channel emulator mainly
for research on adaptable wireless communication, using SDR
prototypes based on FutureSDR8, a modern SDR runtime for
heterogeneous architectures. While the relevance of SDRs is
widely recognized by the community [11], it is also possible
to connect off-the-shelf hardware. A current limitation of our
HITL testbed is that we only consider a single link and do
not mix signals from multiple communication partners, which
could be a future extension. Overall, we believe that the
emulator provides a practical solution that is easy to reproduce,
given the cost and availability of the X310.

E. Bringing it all together

All three main Docker containers are brought together using
docker compose. We separate them from each other using
Docker networks for ground, air, and the outside commu-
nication to the host. Furthermore, any direct communication
between the ground station and the UAV is blocked by
firewall rules. Thus, all traffic has to go through Virtual
LANs (VLANs), which are then bridged or routed, depending
on the scenario, into coreemu. Since the UAV position in
coreemu needs to be synchronized with the position in the
simulated physical world in Gazebo, we developed a bridging
middleware that subscribes to Gazebo position changes and
updates the location of the UAV in the network emulation
via gRPC. The channel emulator must interface with physical
hardware, the SDRs, and, thus, runs directly on the host
machine from which it is patched through to the Docker
instances. The network and ground station containers expose
VNC servers to interact with GUI software such as core-
gui and QGroundControl. Through the network GUI scenario
topologies can also be created and loaded as well as running
simulations with other virtual nodes can be interacted with,
e.g., moving nodes or running various commands on them.

F. Additional Helpers

The network emulation container also has the babel [12]
mesh routing software preinstalled, so virtual nodes can be
used in experiments to bridge traffic for the UAV or to
connect each other. For experiments involving ”data-mules”,
opportunistic networking and Disruption-Tolerant Networking
(DTN), we also included dtn7-rs9[13], which is an imple-
mentation of RFC 9171 [14]. As nodes in coreemu usually
do not know their own positions, we have developed a tool
to periodically update their positions on disk, so they can
easily be queried from within the virtual nodes. Furthermore,

8https://www.futuresdr.org/
9https://github.com/dtn7/dtn7-rs
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Fig. 3. RFNoC implementation of the complex FIR filter that models the channel’s impulse response.

we provide terminal-based live dashboards using wtfutil10 to
show statistics about node positions, peer numbers, etc. These
dashboards can easily be extended with shell scripts to fit
different use cases and scenarios.

IV. EVALUATION

To evaluate and demonstrate SUN, we conducted several
tests regarding our wireless channel emulator and implemented
a test mission as a case-study.

A. SDR Integration for UAV Control

In the following, we evaluate various properties and com-
ponents of our channel emulator that can be used for the UAV
control link.

1) Verification: To validate the filter design and verify
its implementations, we integrate our custom RFNoC blocks
into GNU Radio [15], an open-source SDR framework with
a graphical editor to configure and run signal processing
flowgraphs. This integration allows us to directly compare
the GNU Radio CPU implementation of a complex FIR filter
with our FPGA implementation. To this end, we use a random
source to generate complex noise (normally distributed with
an average of zero and a standard deviation of 0.1), filter them
with similar FPGA and CPU implementations of complex FIR
filters, and compare the results.

For 5M filtered, complex numbers the average difference
between the implementations is 0.6 %, which stems from the
fixed-point integer conversion (32-bit floating point number to
16-bit signed integer), required for the FPGA. Note that this
conversion is only necessary when using the filter with GNU
Radio. When using the emulator, the whole data path on the
FPGA will use 16-bit signed integers.

2) Channel Resolution vs. Delay Spread: The radio fron-
tends of the X310 operate at a fixed sample rate of 200 Msps,
providing a theoretical maximum bandwidth of 200 MHz. The
baseband rate can, however, be reduced using Digital Down
Conversion (DDC)/Digital Up Conversion (DUC) blocks to
down/up sample the baseband signal. With this, we can adjust
a trade-off: Using a higher sample rate results in a larger usable
bandwidth and higher time resolution of the channel impulse
response (one tap corresponds to 5 ns @ 200 MHz) but limits
the delay spread of the 41 available taps (205 ns @ 200 MHz),
corresponding to a maximum path difference of ≈61 m. Using
a lower sample rate limits the usable bandwidth and reduces

10https://www.wtfutil.com
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Fig. 4. Usable bandwidth of the channel emulator. The vertical lines indicate
the 80 MHz offsets, corresponding to the nominal bandwidth of the analog
frontend.

the time resolution of the channel impulse response (20 ns @
50 MHz) but increases the maximum delay spread that can be
modeled by the filter (820 ns @ 50 MHz), corresponding to a
maximum path difference of ≈244 m. These delay spreads are
well within the range of UAV channel models [16], where the
channel models with the largest time dispersion have an Root
Mean Square (RMS) delay spread of ≈60 ns.

3) Usable Frequencies and Bandwidth: The X310 can be
used with different RF frontends (so-called daughterboards)
that do analog up and down conversion. In our testbed, we
utilize the UBX 160, which offers send and receive bandwidths
of 160 MHz for RF frequencies between 10 MHz and 6 GHz.
To be precise, the receive bandwidth is 84 MHz for frequencies
below 500 MHz, which are, however, not of primary interest
for this work. The following experiments, therefore, use higher
frequencies, which provide the full 160 MHz.

The filter acts as a 160 MHz low-pass filter for the complex
baseband signal that is applied twice, i.e., during reception
and transmission. This cascaded application results in steeper
roll-off. To quantify the impact of the analog filter and to
measure the usable bandwidth of the emulator, we set the
emulator to a fixed frequency (2.45 GHz) and a sample rate
of 200 MHz. We, then, tune sender and receiver to different
offsets and send a sine tone. Since the sine is in the center of
the baseband and has zero bandwidth, it is not affected by the
filters of sender and receiver. Measuring the power of the sine
at different offsets from the fixed frequency of the emulator,
we measure the combined effect of send and receive filters of
the channel emulator.

The result of the experiment is shown in Figure 4. The
vertical lines indicate the 80 MHz offsets corresponding to
the nominal bandwidth of the daughterboard. With 160 MHz,

https://www.wtfutil.com
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Fig. 5. Delay induced by the channel emulator.

the emulator provides a practical solution for state-of-the-art
technologies. It can, for example, filter cellular bands with
multiple 4G/5G cells or the whole 2.4 GHz band with a mix
of WLAN, ZigBee, and Bluetooth.

4) Time-Domain Impact: While implementing the complete
data path on the FPGA minimizes delay and jitter, there is
an unavoidable filter and processing delay compared to over-
the-air signal propagation. In this experiment, we measure
the impact of the channel emulator on the timing of the
signal. To this end, we use the Multiple Input Multiple Output
(MIMO) capabilities of the X310, allowing us to send time
synchronized signals. We connect one output of a sending
SDR directly to a receiving SDR and another through the
channel emulator. Since the emulator is not synchronized with
the sender, it will introduce phase and frequency offsets. We,
therefore, send a square wave, allowing the receiver to calcu-
late the magnitude and log the position of the flanks at two
inputs. This measurement is robust against the impairments of
the emulator.

Exemplary results on the time-domain signal are shown
in Figure 5. The receiving SDR operated at a sample rate
of 10 MHz and logged the two signals to disk. Over 70k
flanks were determined and matched in post-processing to
calculate the delay between the signals. The delay was stable
at 3.5 µs with no measurable jitter. To put this into context,
this corresponds to over-the-air signal propagation delay to a
target with a distance of ≈1 km.

While this is low, it can have an impact on technologies
with tight MAC layer timings. For WLAN, this delay is in the
order of the short inter-frame space of 16 µs for IEEE 802.11a
and 10 µs for IEEE 802.11g. Depending on the timing margins
of the hardware, standard-compliant unicast communication
might, therefore, not be possible over the emulator. For broad-
cast communication, this is not an issue.

B. Case Study: Data-ferrying for People on the Ground

a) Mission Outline: Here, we build upon an analytic
paper for optimized route planing with uncertain user loca-
tions [17]. UAVs are commonly suggested for data-ferrying
tasks in store-carry-forward networks. For this mission, we
assume people are spread in a disaster area and can only
communicate opportunistically in their near vicinity, e.g.,
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Fig. 6. Overview of the evaluation area containing ground users (green) and
the starting location (red).
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Fig. 7. Calculated waypoints and path using the algorithm from [17].

through local WLAN mesh. The UAV needs a flight plan to
collect and redistribute all messages from the users using DTN.
To test the flexibility in usage of different vehicles, we will
use a Multirotor (MR) and a Vertical Takeoff and Landing
(VTOL) hybrid UAV to fulfill the mission.

b) Implementation: We configured SUN with parts of our
university campus as a starting geo-location, as we also have
flight permission for real world tests there. Our simulation
covers an area of 1000x1000 m2. In Figure 6, one can see the
overall scenario with the node distribution. The ground station
is placed virtually near the building from which the UAV
is deployed. Furthermore, there are ten virtual nodes, only
existing in the network emulation container that run dtn7-rs,
an open-source implementation of the Bundle Protocol [14].
Additionally, a virtual network node is attached to the UAV
node, also running dtn7-rs and representing physical ad-
hoc communication infrastructure and access points, which
we usually attach to our drones. The coreemu-lab scenario
config is set to pre-generate messages on all ground nodes.
User locations and relevant information serve as input to the
algorithm from Yilmaz et al. [17]. The waypoints are then
calculated and connected by straight lines to generate the flight
path. The result can be seen in Figure 7. Finally, the flight
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path is converted into a mission plan and uploaded through
QGroundControl. First, a Multirotor UAV will fly this mission
and then a VTOL hybrid UAV will fly it.

c) Experimental Results: Part of the flown paths can
be seen in Figure 8. The actual flown paths differ from the
intended path. This happens due to the path tracking algorithm
of the flight controller and the uncertainty of the position
measurement of the UAV. The MR is able to hover and fly at
low speeds, while the VTOL hybrid UAV needs a minimum
speed to stay airborne while in cruise. This also limits its
turning radius. The maximum deviation of the MR is therefore
less (< 2.5m) than that of the VTOL hybrid UAV (< 20m).
The integration of real flight dynamics and control into the
simulator is not only important for testing flight guidance and
planning algorithms (temporal and spatial accuracy is needed
if for e.g. collision avoidance or inspection tasks) but also
for realistic evaluation of communication performance. As
expected, due to the flight path deviation still being in WLAN
range and the opportunistic nature of the communication
system deployed in this scenario, we achieved a 100% delivery
rate for the pre-generated messages.

V. CONCLUSION

In this paper, we presented SUN, a novel environment for
simulating network effects in different UAV scenarios. We
provide a convenient way to design complex scenarios with
a mixture of virtual and physical nodes in a virtual world
where we have various options to model network connectivity
ranging from basic WLAN emulation to more complex models
and even the integration of HITL SDRs for realistic UAV
control channel emulation. Through our channel emulator, we
can explore the effects of various low level wireless links,
new communication mechanisms and tweaks on existing ones
on the UAV remote-operation link. By integrating an industry
standard flight controller (PX4) and a common physical world
simulator (Gazebo), we achieve a high degree of realism and
are able to test flight guidance and communication perfor-

mance concurrently. The simulator speeds up the process of
going from research prototype to real world deployment.
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