
HELIX: High-speed Real-Time Experimentation Platform for 6G
Wireless Networks

Rafael Ruiz
rafael.ruiz@imdea.org

IMDEA Networks Institute
Madrid, Spain

Jesus O. Lacruz
jesusomar.lacruz@imdea.org
IMDEA Networks Institute

Madrid, Spain

Bastian Bloessl
bbloessl@seemoo.tu-darmstadt.de

TU Darmstadt
Darmstadt, Germany

Matthias Hollick
mhollick@seemoo.tu-darmstadt.de

TU Darmstadt
Darmstadt, Germany

Joerg Widmer
joerg.widmer@imdea.org
IMDEA Networks Institute

Madrid, Spain

ABSTRACT
Mobile networks are evolving rapidly, with 6G promising unprece-
dented capabilities in terms of data rates and ultra-low latencies.
However, the development of testbed platforms for wireless exper-
imentation has not kept pace. Existing platforms typically offer
either end-to-end capabilities with low bandwidth or high band-
width with limited or no real-time functionality. In this paper, we
introduce HELIX, an experimentation platform with 6G scalable
real-time capabilities. HELIX integrates a comprehensive physi-
cal layer subsystem with multi-numerology support alongside an
advanced mixed software-hardware control unit responsible for in-
teracting with the fronthaul network and dynamically configuring
the functional split in real time. On the server side, we implement
the necessary drivers and routines to enable seamless integration
with O-RAN systems, thus facilitating open and end-to-end ex-
perimentation. We demonstrate the capabilities of HELIX through
a variety of experiments at sub-6 GHz, 28 GHz, and 60 GHz fre-
quencies. Notably, HELIX achieves data rates of up to 1200 Mbps
using 256-QAM modulation with over 417 MHz of bandwidth, and
end-to-end bidirectional latencies of 500 𝜇s. We show advanced
features, including the implementation of Integrated Sensing And
Communication (ISAC), and discuss how the platform could be
extended to support bandwidths of up to 1670 MHz.

CCS CONCEPTS
• Networks → Network experimentation; Mobile networks; •
Computer systems organization → Real-time system archi-
tecture; • Hardware→ Digital signal processing.

KEYWORDS
6G, O-RAN, Wireless Experimentation, SDR, FPGA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1453-5/2025/06
https://doi.org/10.1145/3711875.3729152

ACM Reference Format:
Rafael Ruiz, Jesus O. Lacruz, Bastian Bloessl, Matthias Hollick, and Joerg
Widmer. 2025. HELIX: High-speed Real-Time Experimentation Platform
for 6G Wireless Networks. In The 23rd Annual International Conference on
Mobile Systems, Applications and Services (MobiSys ’25), June 23–27, 2025,
Anaheim, CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3711875.3729152

1 INTRODUCTION
Mobile networks have continuously evolved to meet the require-
ments of modern applications such as autonomous systems, aug-
mented reality, and interconnected vehicles [40]. These applications
demand high data rates and low latencies, some even requiring end-
to-end latencies below 1 ms (see [36] and references therein). As
part of this evolution, 5G has been designed to address the limita-
tions of previous mobile network generations. One observation is
that sub-6 GHz frequency spectrum is heavily congested, neces-
sitating the exploration of higher frequencies, such as Millimeter-
Wave (mmWave). These frequencies offer vast bandwidth resources,
enabling support for more users and the allocation of larger band-
width. To capitalize on this, 5G introduces new numerologies that
allow bandwidths exceding 400 MHz per spatial stream, combined
with high modulation orders (up to 256-QAM) [1, 47]. Despite the
advancements made by 5G, the demands for even higher data rates,
lower latencies, and greater capacity are driving the development
of 6G. 6G is expected to expand beyond the mmWave band into
the THz frequency range, offering order-of-magnitude increases in
bandwidth while achieving latencies as low as 0.1 ms [35].

The increased bandwidth of 5G and 6G also provides transfor-
mative opportunities, the most notable being the ability to use fine-
grained channel measurements inherently required for transceiver
equalization for the concept of Integrated Sensing And Commu-
nication (ISAC) [21, 37]. ISAC aims to add sensing functionality
to communication systems at minimal cost. However, to achieve
this vision, significant architectural changes are required. Specifi-
cally, channel measurements that are traditionally confined to the
physical layer must be made accessible to the upper layers of the
network stack, enabling advanced sensing functionalities [20, 42].

Experimentation is a cornerstone for validating the design of fu-
ture communication standards. Commercial-Off-The-Shelf (COTS)
devices offer standard-compliant behavior, but lack flexibility and
access to critical parameters, whereas signal generators and an-
alyzers offer the highest flexibility, but lack end-to-end system

https://doi.org/10.1145/3711875.3729152
https://doi.org/10.1145/3711875.3729152
https://doi.org/10.1145/3711875.3729152

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

support and hardware capabilities are very different from COTS
devices. As a consequence, Software-Defined Radio (SDR)-based
platforms have gained significant popularity thanks to providing
direct access to IQ samples for a wide range of frequencies. Open-
source initiatives like srsRAN [11] and OAI [15] have leveraged
these platforms to implement full-stack 4G and 5G systems. While
such approaches have been crucial in enabling wireless research,
they are inherently limited in scalability. As 5G evolved to sup-
port bandwidths exceeding 400 MHz at mmWave frequencies, the
limitations of software-based approaches become apparent. The
fundamental bottleneck lies in the massive fronthaul capacity re-
quired to transfer IQ samples between the Radio Unit (RU) and
the server running the rest of the stack. This issue becomes even
more pronounced in 6G systems, which are expected to operate
with significantly larger bandwidths. Furthermore, the increase
in data rates amplifies the impact of software-induced latencies
in critical components such as channel decoders, Orthogonal Fre-
quency Division Multiplexing (OFDM) (de)modulators, and other
physical layer processes, directly affecting system performance.
While srsRAN [11] and OAI [15] can use hardware accelerators
to offload some of the most computationally intensive tasks (e.g.,
channel decoding) and NVIDIA’s Aerial framework [16] exploits
the parallel processing capabilities of GPUs to implement the entire
physical layer, these solutions still rely on the transport of full IQ
samples between the RU and the server. Despite this, the maximum
bandwidth supported by the above systems is 100 MHz.

The challenges faced by current testbeds highlight a critical gap:
testbeds are not evolving at the same pace as the technologies them-
selves. To fill this gap, we introduce HELIX, a high-speed real-time
experimentation platform for 6Gwireless networks. HELIX is a com-
prehensive hardware-software co-designed platform that integrates
the essential blocks for a 5G-compatible physical layer subsystem
into a powerful Radio Frequency System-on-Chip (RFSoC) platform,
making it ready to drive future 6G experimentation, thanks to its
low latency and scalability to higher bandwidth configurations. It
incorporates a low-latency control interface to efficiently handle
traffic over the fronthaul link, seamlessly connecting to a server.
On the server side, it implements a C++ library to enable smooth
integration with high-level applications through simple commands,
ensuring ease of use and adaptability. The key HELIX features are:
Dynamic Multi-Split Functionality: HELIX operates as a multi-
split platform, allowing real-time relocation of physical layer blocks
between hardware and software (and vice versa). This capability
aligns with the functional splitting options defined by 3GPP [19, 28],
enabling researchers to explore various configurations and adapt
to specific experimental needs.
Reconfigurable FR{X} Operation: The platform supports mul-
tiple numerologies suitable for multiple frequency bands such as
sub-6 GHz (FR1) and mmWave (FR2) frequencies. By dynamically
reconfiguring blocks, HELIX can seamlessly switch traffic between
frequency bands without requiring a system reboot, supporting
flexible experiments across diverse frequency bands.
Scalable Bandwidth and Carrier Aggregation: HELIX provides
up to 4 carrier-aggregated channels with a combined bandwidth
of up to 1670 MHz. These channels can operate with any combina-
tion of numerologies, transforming the platform into a multiband
system suitable for advanced 5G and 6G research.

Fronthaul Interface with Side Information: The fronthaul in-
terface is designed to transmit side information—such as Channel
Frequency Response (CFR) and Signal-to-Noise Ratio (SNR)—to the
server, enabling future 6G ISAC use cases.
Integration with Acceleration Abstraction Layer (AAL): Using
a crossbar switch implemented on the RFSoC, HELIX can acceler-
ate latency-critical functions using its AAL. This allows HELIX
to also complement other platforms by offloading time-sensitive
processing tasks, extending its utility beyond standalone use. The
versatility of HELIX to support a variety of configurations and
use cases is demonstrated through a series of experiments using
different RFSoC platforms, showcasing its portability, integrated
with sub-6 GHz and mmWave front ends operating at 28 GHz and
60 GHz. The platform can also be used with other frequency bands
such as FR3 and sub-THz, both potential candidates for future 6G
networks. The platform supports 1670 MHz of bandwidth with car-
rier aggregation, as well as bidirectional latencies down to 500 𝜇s.
Its innovative design addresses the scalability and integration chal-
lenges of current testbeds and bridges the gap between hardware
flexibility and standard compliant performance, empowering re-
searchers to explore advanced wireless technologies. We made this
implementation available as open-source1

2 5G ARCHITECTURE PRIMER
In terms of capabilities, 6G is anticipated to build upon 5G technolo-
gies as an evolution [48]. This section explores key aspects of 5G
that lay the foundation for developing a 6G experimentation plat-
form. A significant milestone in 5G evolution is the introduction
of disaggregated architectures, such as Open Radio Access Net-
work (O-RAN). Unlike traditional Radio Access Network (RAN),
O-RAN emphasizes flexibility, modularity, and scalability through
standardized interfaces and open-source implementations. A major
contribution of the O-RAN framework is its ability to decouple
hardware and software components, enabling network operators
to create tailored solutions for diverse scenarios.

2.1 O-RAN and Functional splitting
Task disaggregation is a cornerstone of 5G [19]. A defining feature
of O-RAN is its support for functional splitting, where traditional
base station functions are divided among Centralized Unit (CU),
DU, and RU. This enables flexible deployment of RAN components
tailored to specific service and network requirements.

Functional splits are classified into high-layer and low-layer op-
tions, as shown in Fig. 1. High-layer splits, such as between the
CU and DU, separate control functions such as Radio Resource
Control (RRC) from real-time tasks such as scheduling. Lower-
layer splits, typically connecting the DU and RU, demand greater
fronthaul bandwidth due to raw data transport, presenting imple-
mentation challenges.

Split 7.2x has emerged as an industry favorite because of its
compatibility with O-RAN and its simplified RU design, simply
implementing digital beamforming (in case of multi-antenna) and
OFDM modulation, offering reduced size, power, and cost. This
makes it a practical choice, from the operator point of view, for
modern O-RAN deployments.
1https://github.com/IMDEANetworksWNG/HELIX

https://github.com/IMDEANetworksWNG/HELIX

HELIX: High-speed Real-Time Experimentation Platform for 6G Wireless Networks MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

BBU RUCore Network

RRC PDCPCore Network

Backhaul
Interface

CU

Fronthaul
Interface

From centralized
 to distribuited networks

Option
1

Option
2

Option
3

Option
4

Option
5

Option
6

Option
8

High-
RLC

Low-
RLC

High-
MAC

Low-
MAC

High-
PHY

DU

Option
7

Backhaul
Interface

Midhaul
Interface

C
od

in
g

M
od

ul
at

io
n

La
ye

r M
ap

pi
ng

PR
B

m
ap

pi
ng

Be
am

fo
rm

in
g

O
FD

M
, C

P
ad

d

R
F

7.3 7.2 7.2x 87.16

High-PHY Low-PHY

Low-
PHY RF

RUFronthaul
Interface

Figure 1: O-RAN architecture: in the example, the Distributed Unit (DU) is executing the High-RLC to High-PHY while the RU
only executes the Low-PHY and RF tasks; different common splits are shown in the break-out box

2.2 Fronthaul interface
The DU and RU are connected through the fronthaul interface.
O-RAN introduced a standardized fronthaul interface to ensure
compatibility across different implementations [2].

The O-RAN fronthaul interface supports low-layer splits such
as split 7.2x, where data is transported using the evolved Common
Public Radio Interface (eCPRI) protocol on top of Ethernet. This
interface requires precise timing to align operations between theDU
and RU. There are clear benefits of having standardized fronthaul
interfaces. However, there are still challenges to be solved. The
specifications mainly focus on split 7.2x, which leaves a big part
of the physical layer processing to the server side. As mentioned
in Section 1, a massive increase in data rates is expected for 6G,
driven by higher bandwidth, modulation and MIMO orders. Such
physical layer configurations will impose extremely high fronthaul
demands. As a toy example, a system with 4 spatial streams and
1600 MHz of bandwidth would require 200 Gbps of throughput
over the fronthaul network using a split 7.2x configuration—this
example only considers a fraction of the capabilities envisioned for
6G systems [35, 40].

3 HELIX TOP-LEVEL ARCHITECTURE
HELIX enables 5G and beyond experimentation by combining
hardware and software components. From a high level perspec-
tive, the platform consists of: i) a powerful RFSoC board where
Programmable Logic (PL) and Processing System (PS) cooperate
to form a complete embedded system with hardware blocks that
implement the physical layer components, tied to a control unit that
manages the operation of the system; ii) a C++ library at the server
side that allows the integration with applications; and iii) the fron-
thaul interface, which is carefully designed using hardware cores
and software functions to connect the two subsystems levering UDP
sockets. Altogether, these components enable a high-performance,
flexible, and modular testbed that supports real-time deployments
with high-bandwidth operation.

HELIX operates in two different modes: 1) as a standalone sys-
tem for advanced wireless experimentation or 2) as a plug & play
platform that can form a part of O-RAN projects by instantiating
it within their framework as physical layer. In Fig. 2, we present
the top-level architecture of HELIX, showing the main components
and their interconnections. In this section, we cover the design of

the fronthaul interface, control manager, and the functional split
crossbar, which is key for flexible functional splitting. Building such
platform is particularly challenging due to high bandwidth require-
ments, which demand carefully engineered buffering strategies and
low-latency control interfaces to prevent bottlenecks and ensure
sustained data throughput across the processing pipeline. Finally,
we cover the C++ software library which controls the entire system
from the server side. Transmitter and receiver processing blocks
are presented in Section 4, since the operation of the system is
independent of the operation of the blocks.

3.1 Custom fronthaul interface
For real-time platforms, the fronthaul interface manages the ex-
change of information between the server and the RU, including
data transmission and control of radio parameters. In our design,
this is implemented using the RFSoC. To support reliable links
and diverse operational modes, the fronthaul must be robust, high-
speed, and flexible. Within the O-RAN community, eCPRI is the
preferred choice for fronthaul interfaces. However, eCPRI is primar-
ily designed for split 7.x operations at the protocol level. Addition-
ally, while some implementations targeting Field Programmable
Gate Arrays (FPGAs) exist, these cores are often excluded from the
licensing options accessible to most academic institutions. Other so-
lutions, such as UHD [32], are heavily customized for USRP devices,
making integration with other platforms challenging.

To address these limitations, we developed a custom interface
that leverages UDP sockets over a 10Gb Ethernet link. This solu-
tion ensures robust, low-latency, and high-speed communication.
Our design includes dedicated data plane, control plane, and a so-
called side-info plane, each assigned to specific UDP ports, enabling
independent handling of data streams and control information.

The side-info plane aims to support emerging 6G applications,
such as sensing within an ISAC framework. HELIX facilitates the
transmission of additional physical-layer information, such as chan-
nel estimates and SNR values, to the server’s upper layers. This is
achieved through a dedicated UDP port, ensuring efficient delivery
of such metadata.

On the RFSoC, HELIX incorporates a hardware-implemented
UDP stack based on [10], which we enhanced to support multiple
UDP ports and Advanced eXtensible Interface (AXI) for seamless
integration with other blocks. This implementation eliminates the

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

Figure 2: Top-level architecture of HELIX

need for offloading UDP processing to the PS, significantly reducing
overall latency. Each UDP port is assigned a dedicated data-path.
The Data Plane connects directly to the processing blocks via a
stream manager and crossbar, enabling efficient data transfer. The
Control Plane carries messages that are managed by the embedded
PS through a control buffer, ensuring efficient handling of configu-
ration and control commands. The Side-info plane collects relevant
information from the processing blocks and packetizes it to offload
it to the server for further real-time processing.

The architecture can provide the flexibility, speed, and low la-
tency required for real-time operations while supporting advanced
functionalities such as sensing and multi-port communication. Ad-
ditionally, the designed fronthaul is transparent to the functional
split used. Appropriate control messages configure the system to
carry information from the relevant processing blocks based on
the chosen split option. The combination of modularity and the
protocol-agnostic nature of the fronthaul interface enables dynamic
and flexible functional splitting, making the architecture adaptable
to various deployment scenarios and evolving system requirements.

3.2 Control and Stream Manager
The RFSoC embedded PS plays a crucial role in managing the sys-
tem’s control plane. Messages received through the control plane
port are stored in a buffer, which the PS reads to process and execute
commands. These commands are used to: i) configure parameters
for the processing blocks in a specific functional split, ii) change
the functional split configuration (see Section 3.3), iii) manage data
streaming operations and iv) adjust the fronthaul configuration.
The embedded PS modifies configuration parameters in the process-
ing blocks using the AXI-lite, enabling fast read/write operations
between the PS and the PL. Key configurations include numerol-
ogy, the number of Physical Resource Block (PRB), modulation
order, and coding rate. Additionally, the control plane oversees the
triggering of data transmission and reception.

These operations are orchestrated by a block in the programmable
logic called Stream Manager. The Stream Manager ensures precise
control of data streaming, including the start and stop of streams
to maintain sample alignment. It also handles critical tasks such
as clock domain crossing between the 10Gb Ethernet clock and
the clock used by the processing blocks, ensuring seamless data
transfer between different domains.

The PS further configures the side-info plane through specific
control messages. This configuration determines which side infor-
mation is shared with the server, optimizing fronthaul bandwidth

usage in high-bandwidth scenarios. As detailed in Section 3.1, the
side information is transmitted over a dedicated UDP port to avoid
collisions with the data plane. The information is packetized and
sent from the platform at the end of every received slot.

3.3 Crossbar for Flexible Splitting
A key feature of HELIX is its support for flexible functional split-
ting, enabling dynamic reconfiguration to meet varying network
requirements. This capability is achieved through the integration
of the AXI Stream Interconnect IP [44] from Xilinx’s IP library.
This crossbar interconnects AXI-stream-capable processing blocks,
allowing for versatile data routing. While any block can theoreti-
cally connect to any other, limiting interconnections during design
synthesis can lead to a more optimized implementation. During
runtime, the crossbar’s configuration can be entirely reprogrammed
using simple commands from the control plane. Besides, the split
configuration can be independently selected in the receiver and the
transmitter, enabling asymmetric functional splitting, adding more
flexibility to the platform. Additionally, our crossbar architecture
allows switching between functional split configurations at runtime
in less than 50 𝜇s without the need to re-flash the FPGA image.

For instance, Fig. 3 illustrates the crossbar used in transmitter
processing blocks (see Section 4.2) and various configurations for
routing samples from the Stream Manager to the Digital-to-Analog
Converter (DAC). In a split 6 configuration (Fig. 3a), data flows
sequentially through the LDPC encoder, Modulator, Grid Builder
(RE mapping), OFDM modulator, and finally the DAC. If a block
needs to be replaced (e.g., with a different implementation), it can
simply be disconnected from the crossbar, and the new block added
without significant redesign. In a split 7.2x configuration (Fig. 3b),
the crossbar adjusts its internal switching, connecting data from
the Stream Manager directly to the OFDM modulator. This recon-
figuration is achieved by sending a control command from the
server. Similar logic applies to other split configurations and re-
ceiver blocks, enabling broad experimentation possibilities beyond
the physical-layer algorithms implemented in this paper.

As discussed in Section 3, HELIX is designed to work in tan-
dem with other platforms within the context of the AAL defined in
O-RAN terminology. The AAL allows a DU to offload critical func-
tions to a pool of accelerators, such as GPUs, FPGAs, or other spe-
cialized hardware [5], depending on network requirements. Fig. 3c

HELIX: High-speed Real-Time Experimentation Platform for 6G Wireless Networks MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

LDPC

Modulation

RE mapping

OFDM mod

Filter

DAC

to
UDP

Stream
Manager

(a) Split 6

LDPC

Modulation

RE mapping

OFDM mod

Filter

DAC

to
UDP

Stream
Manager

(b) Split 7.2x

LDPC

Modulation

RE mapping

OFDM mod

Filter

DAC

to
UDP

Stream
Manager

(c) Hardware acceleration

Figure 3: HELIX crossbar for flexible functional splitting

demonstrates how the crossbar facilitates this functionality by rout-
ing data from the Stream Manager to an accelerator (e.g., the Low-
Density Parity-Check Code (LDPC) encoder), performing the nec-
essary computation, and returning the processed data to the DU
for further processing. This setup supports not only single-block
offloading but also multi-block configurations based on crossbar
interconnections.

Additionally, third-party blocks can be integrated into the cross-
bar in HELIX, allowing them to function as hardware accelerators,
or to replace or cooperate with existing blocks, thereby extending
the system’s functionality. For example, to support a new or exper-
imental coding scheme - such as non-binary LDPC or polar code
variants envisioned for 6G - the corresponding block can simply
be added to the crossbar, and samples can be redirected to this
block instead of the legacy LDPC decoding block. This design en-
hances the system’s modularity and flexibility, aligning well with
the principles of O-RAN, promoting interoperability and scalability.

3.4 Interface Library
To simplify the use of HELIX and facilitate its integration with
high-level applications, we developed a C++ interface library that
serves as a wrapper between the implementation on the RFSoC
and network applications. The library was designed with three
main objectives in mind: (i) function abstraction and usability, (ii)
seamless integration with applications, and (iii) high performance.

The library provides a user-friendly interface that abstracts the
low-level operations needed to configure processing blocks, start
transmission, enable reception, and set up splitting options. By hid-
ing the platform’s implementation details, the library significantly
improves accessibility for users who may lack in-depth knowledge
of the system’s architecture. Internally, the library manages es-
sential tasks such as radio configuration, UDP transport and port
management, and handling of control messages. A notable advan-
tage of the library’s design is its portability. If the implementation
is migrated to a different platform, the abstracted functions allow
for smooth transitions with minimal rewriting, avoiding the need
to recreate functionality from scratch.

At the core of the library is a radio parent class, which en-
capsulates all essential functionalities, including data streaming
and radio configuration. The library supports the integration of
multiple HELIX instances within a single application, making it
highly versatile. For instance, the radio class can be integrated
into O-RAN implementations such as srsRAN or OAI, replacing the
legacy radio instantiation. Users can interact with HELIX through
simple function calls like radio.send() and radio.transmit(),
enabling seamless data streaming over UDP sockets. Alg. 1 provides

Algorithm 1 Radio Configuration and Streaming
Input: IP address ip = 192.168.5.10
Functional split split_conf_rx = 6
split_conf_tx = 7.2x
Create radio_example = radio(ip)
{Configure processing block parameters}
radio_example.config.set_ofdm_config(...)
radio_example.config.set_ldpc_config(...)
....
radio_example.config.set_split(split_conf_rx)
radio_example.config.set_split(split_conf_tx)
#changes the crossbar configuration at tx and rx
{Data streaming}
radio_example.stream.transmit(tx_buffer) #sends a
trigger and transmit the data through the UDP socket
radio_example.stream.receive(rx_buffer)

a concise example of how to use the library for enabling data trans-
mission and reception. After instantiating the parent class, users
can configure various processing blocks (based on specific parame-
ters), select a split configuration, and initiate data transmission and
reception—all with minimal code.

Finally, the library is designed with a strong focus on perfor-
mance, ensuring low-latency and high-throughput transmissions.
To achieve this, the library verifies that the platform is prepared for
data streaming, whether for transmission or reception. For instance,
to initiate a transmission, the C++ library sends a simple trigger
signal just before data streaming begins and waits for an acknowl-
edgment reply. This process takes approximately 30 𝜇s, ensuring
minimal latency and supporting high data rates, as demonstrated
in the experimental results.

4 PROCESSING BLOCKS
In this section, we address the design of the processing blocks on
the PL in the RFSoC. All blocks are wrapped with AXI interfaces
to connect them with the crossbar (Section 3.3). To support the
highest numerology (Subcarrier Spacing (SCS) = 240 kHz), the IQ
samples are processed at a sampling rate of 491.52 Msps. To relax
the requirements for FPGA place & route phase, we choose a clock
frequency of 𝑓𝑐𝑙𝑘 = 245.76 MHz and thus the datapath handles two
(complex) samples per clock cycle. Processing multiple samples
in parallel in communication transceivers is challenging because
many DSP algorithms—such as filters, FFTs, or decoders—rely on
dependencies between input samples. When several samples are
processed in parallel the design should manage how data is shared,

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

CFO
Corr. 8 SSB

Proc.
DM-RS

Chan. Est.

MMSE
Equalizer

Phase
Tracking

M-QAM
Demapper

Channel
Decoder

ADC
OFDM
Demod.

491.52 Msps
2 Samples / clk_cycle

Bypass option
for high BW

Estimated CFO

Sync. Point
PSS

Subcarriers

G
ai

n

Channel Freq.
Response

To Side Info Plane

Post. Eq. IQ const.

To data
plane

Post. Eq. IQ const.

LLRs
01001..110

Figure 4: Receiver processing block diagram

reused and ordered, introducing additional complexity in the datap-
ath. For the lower numerology (SCS = 30 kHz), instead of changing
the clock frequency, we keep the same datapath and process two
samples every eight clock cycles controlling this behavior using
the AXI interface. Thus, the same processing blocks can be used for
both numerologies, allowing the design to seamlessly transition be-
tween them without requiring any reprogramming. All the inputs
and outputs of the blocks are quantized to𝑊 = 16 bits to match
the interfaces to the AD/DA converters.

4.1 Receiver blocks
To explain the blocks that compose the receiver sub-system, we go
from the samples from the ADC to the decoded bit sequence, as they
pass through all the processing blocks, as shown in Fig. 4. Here, we
assume a split 6 configuration and omit the crossbar (Section 3.3)
for clarity.

Carrier Frequency Offset (CFO) correction implements the
CORDIC algorithm [39] to compensate for the frequency mismatch
between the transmitter’s and receiver’s local oscillators. It uses
the estimated CFO from the Synchronization Signal Blocks (SSB)
block (see below).

Bypassable downsampling filter is designed as a div8 down-
sampling filter with two output paths to accommodate different
subcarrier spacing (SCS) requirements. One output feeds the SSB
processing block to retain the subcarriers where the SSB is located.
The second output is selected based on the SCS: for SCS = 30kHz,
the output is taken from the downsampling filter, while for 240kHz,
the filter is bypassed, feeding the input directly to the output.

SSB Synchronization: In 5G, the SSB enables initial cell search,
synchronization and beam management, using Primary Synchro-
nization Signal (PSS) and Secondary Synchronization Signal (SSS)
signals. Our design, based on [24], includes an extra div8 down-
sampling filter for SCS=30kHz, bypassed for 240kHz. The PSS es-
timation sub-block correlates the signal with a time-domain PSS
sequence,2 using a dynamic threshold computed via a moving av-
erage filter to detect a valid PSS, as shown in Fig. 4. The CFO is
estimated from the phase of the Cyclic Prefix (CP) autocorrelation,
averaged across OFDM symbols in the SSB, with a CORDIC im-
plementation in vectoring mode [39]. Synchronization is achieved
using a dual-port RAM acting as a shift register, whose length

2Currently, only one of the three PSS sequences is supported, with plans to include
the others.

adapts to the SSB’s slot position, outputting the slot’s start upon
valid PSS detection

OFDM demodulator includes a 2048-FFT core designed with
the help of HDL-coder (Matlab), which allows to process multiple
samples in parallel. We include digital logic to remove CP (consider-
ing that first OFDM symbol in the slot has a longer CP than the rest
of symbols), apply Fast Fourier Transform (FFT), zero-frequency
centering, and removal of the null subcarriers. The block is trig-
gered by the synchronization from the SSB, which allows to retain
the OFDM symbols. Note that because of the removal of CP and null
subcarriers, the output stream has fewer samples than the input
one, reducing overhead.

Demodulation Reference Signal (DM-RS) channel estima-
tion: we implement a pilot-based based channel estimation based
on DM-RS in the slot [1] using a two-step procedure. First, we
perform an LS estimation 𝐻0 [𝑘] =

𝑌 [𝑘]
𝑋 [𝑘] ∀ 𝑘 ∈ KDMRS, where

KDMRS is the set of subcarriers where DM-RS are located, 𝑌 [𝑘]
is the received frequency domain signal, 𝑋 [𝑘] is the transmitted
DM-RS and noise was omitted to enhance clarity. Then, the channel
is estimated for all subcarriers using a kernel regression method
[31, 38] that takes the LS estimates over DM-RS subcarriers and
applies a Gaussian kernel function 𝐾 (𝑘,𝑚) = exp

(
− (𝑘−𝑚)2

2𝜎2

)
that

determines the influence of the estimated channel at subcarrier𝑚
on the estimation at subcarrier 𝑘 . 𝜎 is the width (bandwidth) of
the kernel, i.e., it controls the influence of the neighbor subcarriers
to the one of interest. The interpolated channel at subcarrier 𝑘 is
given by a weighted sum of the known estimates at the DM-RS
subcarriers:

�̂� [𝑘] =
∑
𝑚∈KDMRS 𝐾 (𝑘,𝑚) · 𝐻0 [𝑚]∑

𝑚∈KDMRS 𝐾 (𝑘,𝑚) (1)

In our implementation, LS estimates are computed by multiplying
with inverse of the DM-RS symbols 𝑋 [𝑘]−1 to avoid unnecessary
divisions. The kernel regression was implemented as a frequency
domain filter over 𝐻0, upsampled to all subcarriers. Finally, since
the noise variance is required to implement MinimumMean Square
Error (MMSE) equalization, we compute it from the LS and kernel
estimations using

𝜎2𝑛 =
1

|KDMRS |
∑︁

𝑘∈KDMRS

���̂�0 [𝑘] − �̂� [𝑘]
��2 (2)

MMSE equalization receives the demodulated OFDM symbols,
channel �̂� [𝑘] ∀𝑘 ∈ K and noise variance 𝜎2𝑛 to compute the equal-
ized symbols 𝑋 as 𝑋𝑒𝑞 = �̂� ∗

|�̂� |2+𝜎2𝑌 . First, the denominator is com-
puted and then a divider (from the Vivado IP library) is employed
to compute its inverse. Then, the output of the divider is multiplied
by the conjugate of (�̂�∗) and then by the input symbols 𝑌 . We
implement the necessary synchronization and state machines in
the block to ensure proper alignment of the different data-paths,
considering that these come at different time instants.

Phase tracking: in 5G, Phase-Tracking Reference Signal (PT-RS)
are used to mitigate phase noise and improve demodulation accu-
racy, especially in high-frequency bands like mmWave. These are
distributed in the time and frequency domainwith a granularity that
depends on the configuration. The block first estimates the resid-
ual channel ˆ𝐻𝑟𝑒𝑠 by LS followed by the kernel regression method,

HELIX: High-speed Real-Time Experimentation Platform for 6G Wireless Networks MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

similar to the channel estimation. Estimation is performed on all
symbols where PT-RS are located, and then averaged to reduce the
effect of noise. Next, the angle 𝜃 of the estimated residual chan-
nel is computed using a CORDIC implementation [39] in rotation
mode and then compensating for the phase by another CORDIC in
vectoring mode.

Symbol demapping is implemented via a soft decision demap-
per for M-QAM modulation schemes using the method from [23]
which allows to compute an approximation of the Log-Likelihood
Ratios (LLRs) suitable for soft-decision channel decoders. Following
the symbol mapping from 5G [1], we reuse the multipliers required
to compute the LLRs regardless of themodulation order which saves
FPGA logic elements. While [23] uses the noise variance in the com-
putation, we omit it to avoid unnecessary divisions. Moreover, for
channel decoders based on the Min-Sum algorithm, knowledge
of the statistics of the channel is not required [8]. Once LLRs are
computed, we apply de-scrambling with the same sequence used
at the transmitter side. For simplicity, the sequence is fixed and
pre-stored in the block.

Channel decoding: we implement an LDPC decoder combined
with rate matching as per [26]. We use the hardened LDPC decoder
embedded on the RFSoC [13], which implements the Min-Sum
LDPC decoding algorithm [8], with configurable scaling factor,
decoding iterations, and early termination to improve throughput.
The core supports the parameters defined in the standard and uses
AXI to ease integration with larger designs. We include digital
logic to implement the rate matching and interleaving algorithms
following the structure defined for the modulation.

4.2 Transmitter blocks
The transmitter block’s key challenge is ensuring high-fidelity sig-
nal generation to withstand channel impairments. This depends
heavily on a carefully designed quantization strategy to maximize
dynamic range. Additionally, maintaining proper data rates across
all blocks is crucial to prevent processing interruptions. To address
this, we use appropriately sized FIFOs and state machines that
ensure continuous processing by triggering blocks only when suffi-
cient data is available. Below, we provide a brief overview of each
transmitter block’s function.

Modulator takes the sequence of coded bits and maps them to
the alphabet defined by the modulation order being used. The map-
ping criterion is defined in [1]. Prior to the mapping, it scrambles
the input bit sequence with the fixed scrambling sequence.

Grid builder merges the data symbols from the modulator with
the reference symbols (DM-RS, PT-RS) and with the SSB . The
block is configurable for different densities (time and frequency) of
reference symbols and to locate the SSB in the slot. We design the
grid and modulator block using the high-level synthesis tool from
the FPGA vendor (Vitis-HLS).

OFDMmodulator uses an instance of the FFT block designed
for the receiver to implement the inverse FFT by computing the
complex conjugate of the input and output of the core. Besides, we
design the control logic to insert null subcarriers (prior to IFFT)
and append CP (after IFFT).

Bypassable upsampling filter feeds the samples to the DAC at
491.52 Msps in case of the highest SCS (240 kHz). This is the most

rate challenging case, and the whole processing chain is designed
to ensure this data rate. For the lower SCS (30 kHz), the block
consumes two samples every eighth clock cycle and feeds them
to an 8× upsampling filter prior to the DAC. Since samples are
consumed at a lower pace, we also ensure that FIFOs in the pipeline
do not overflow at any time.

5 IMPLEMENTATION
We implement HELIX on the Xilinx RFSoC ZCU111 and ZCU208
boards [45, 46], which integrate Giga-sampling rate AD/DA con-
verters, large number of logic elements, multi-core ARM processor,
10GbE interface and hardened LDPC decoders. However, HELIX
is designed to be platform independent thanks to its modularity
and standard interfaces. A full implementation of HELIX on those
boards requires 22% of the available DSP units, 21% of logic blocks
and 45% of Block-RAM. These results show that there is still margin
to scale to higher bandwidth configurations as we will show in
Section 6.3, since most of the BRAM is used for network buffers
that do not augment with the number of channels.

We measured the inherent latencies of the processing blocks.
For the transmitter blocks the total latency is 9307 clock cycles
(37.87 𝜇s with 𝑓𝑐𝑙𝑘 =245.76 MHz), where the OFDM modulator is
responsible for 99% of the latency, due to the CP addition and the
FFT computation time itself. For the receiver blocks, latencies sum
up to 24701 clock cycles (100.51 𝜇s) with 41% of the latency caused
by the SSB synchronization that buffers OFDM symbols until the
PSS is detected. The channel decoder constitutes 27% of the latency
due to the iterative nature of the algorithm.

HELIX supports a variety of RF front ends, enabling flexibility
across different frequency bands. Using the Numerical Controlled
Oscillator (NCO) embedded in the AD/DA converters, it is possible
to translate the signal in frequency depending on the requirements.
For example, for mmWave front ends such as the Sivers 28 GHz and
60 GHz EVK [33] [34] that we use in our experiments, the converters
in the RFSoC are configured in IQ/IQmode, where separate in-phase
and quadrature components are processed independently. This
configuration is essential for interfacing with the mmWave front
ends. Moreover, since in 5G the DC subcarrier conveys information,
we employ a low-Intermediate Frequency (IF) architecture using the
internal NCO of the converters, and then the mmWave front ends
perform the final up/down conversion to RF frequencies. A similar
approach could be followed to use terahertz and sub-terahertz front
ends. For sub-6 GHz, the AD/DA are able to perform direct RF
conversion, by setting the converters in an IQ to real mode (Tx)
and vice versa (Rx). The real-time configurable NCO perform the
conversion, allowing to quickly select and update the FR1 band
at run-time from the server with a simple command. Regarding
server requirements, only a multi-core server and a 10GbE card are
required, with sufficiently large network buffer size (>30 MB) and
the interface configured to jumbo packet mode.

6 EVALUATION
In this section, we evaluate the performance of our platform through
microbenchmarking and experimental analysis. The microbench-
marks assess key physical layermetrics such as constellation quality,

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

Figure 5: Evaluation setup.

channel estimation accuracy, and Bit Error Rate (BER). We eval-
uate throughput and fronthaul overhead on system and platform
level. Next, we conduct experiments to showcase the potential of
the platform in terms of multiband support, scalability, and ISAC
support.

To demonstrate the highest numerology (i.e., SCS=240 kHz over
mmWave frequencies), we deploy HELIX on two nodes based on
the Xilinx RFSoC ZCU208 development board, with mmWave front
ends including phased antenna arrays from [33], operating in the
24 GHz to 28 GHz band. We employ one server for each node, at-
tached via 10GbE.Whilewe perform the experimentswithmmWave
and sub-6GHz front-ends, HELIX can be connected to front-ends
in other frequency ranges, such as FR3 band or sub-THz.

6.1 Microbenchmarks
Transmitter quality: To evaluate that our hardware implementa-
tion of the transmitter blocks does not introduce significant quanti-
zation noise that distorts the transmit signal, we compare (using
split 6 configuration) the signal that goes to the DAC, i.e., the output
of the Tx upsample block, with its counterpart software implemen-
tation (i.e., split 8). As can be seen in Fig. 6a, the total quantization
errors are on the order of 10−4, which indicates that the hardware
implementation introduces minimal distortion. This low error mag-
nitude demonstrates that the hardware design closely replicates
the ideal software model, maintaining signal integrity and meeting
the stringent quality requirements of 5G transmission.

CFO compensation: in OFDM, CFO is particularly harmful as it
causes inter-carrier interference (ICI), which degrades the received
signal. This effect is especially significant at mmWave frequencies,
where CFO can be particularly high. Fig. 6b shows the estimated
CFO from the SSB over 280 slots, both without compensation and
after applying CFO correction using our processing blocks. As
shown, after correction, the CFO is reduced to within a fraction
of the 240 kHz SCS, effectively mitigating its impact. Notably, this
experiment was conducted at 60 GHz mmWave, demonstrating the
suitability of the design for high mmWave frequencies.

Channel estimation: One important aspect to consider when
implementing functionalities for the FPGA logic is the potential per-
formance degradation caused by fixed-point quantization, as well
as design choices made to optimize resource usage and throughput.
To illustrate this, we compare the channel estimation in the split 6

configuration—using the method described in Section 4.1—with its
software counterpart in the split 8 configuration.3 As shown in
Fig. 6c, the implemented kernel regression method preserves the
main characteristics of the channel, although some fast oscillations
are not captured. Nevertheless, the impact of these oscillations is
negligible, as evidenced by the IQ constellation plots in Fig. 7. A
similar evaluation was conducted for the remaining processing
blocks during the design stage, confirming that the fixed-point
implementations preserves performance across the pipeline.

Constellation analysis: The equalizer and phase tracking were
evaluated by analyzing the constellations for all modulation or-
ders supported by HELIX. In this experiment, two HELIX nodes
equipped with 28 GHz mmWave front ends were deployed in a
line-of-sight setup at a distance of 1.5m. Fig. 7 shows the results,
where the distinct point clouds indicate that HELIX successfully
supports all modulation orders defined by 5G. Results for sub-6GHz
were omitted due to space constraints, but the constellation shown
in Fig. 4, taken with 30 kHz SCS and a 2.3 GHz carrier frequency,
demonstrates even better quality than Fig. 7d, as expected.

BER analysis: the most important test for our HELIX physical
layer implementation is the BER. For this experiment, we replicate
the constellation analysis setup, but vary the transmit power at the
mmWave front end for different SNR values. We set three different
rates (low, medium and high) using rate matching capability of
HELIX. Due of lack of space, we only show two modulation orders,
QPSK and 256QAM. For the QPSK case, we compare split 6 (using
all the hardware receiver processing blocks) with split 8, where
all processing is performed on the server. Results are presented in
Fig. 8a, where we see a consistent 2 dB difference comparing the
two implementations. In Fig. 8b, we show the results for 256QAM
modulation. In this case we choose the example of a 7.3 split to com-
pare against split 8. Here, we also note the 2 dB separation between
the curves. The reasoning behind this is that split6 and split7.3
include all the effects of fixed-point arithmetic and approximate
algorithms, whereas split 8 benefits of floating-point arithmetic and
optimized algorithms only suitables for DU implementations.

6.2 System level evaluation
Latency: In this experiment, we analyze the end-to-end latency of
the system. We send a message from Node A to Node B and wait
for a reply. Then, we measure the time difference in Node A after
receiving the reply fromNode B.We utilize a split 6 configuration to
measure the inherent latency of our implementation at the system
level. We repeat the same experiment for more than 40 seconds to
extract latency statistics. The results of the experiment from Fig. 9
show that the median end-to-end latency is 544.77 𝜇s and 90% of
the points are below 625.77 𝜇s, with a limited number of outliers.
Considering the results from Section 5, the delay from AD/DA and
the latency of the trigger command from the server to the platform,
the measurements from this experiment are coherent. According to
these results, HELIX can be utilized for Ultra Reliable Low Latency
Communication (URLLC). The existence of outliers is due to the
instability of the interrupt-driven kernel socket library. This could
be solved by using polling-based packet processing in user space,

3For this, we estimate the channel using the function from the MATLAB 5G Tool-
box [25].

HELIX: High-speed Real-Time Experimentation Platform for 6G Wireless Networks MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

(a) Transmitter comparison (b) CFO pre and post compensation (c) Channel est. comparison

Figure 6: Processing blocks validation

(a) QPSK modulation (b) 16QAMmodulation (c) 64QAMmodulation (d) 256QAMmodulation

Figure 7: Over-the-air transmission

(a) Split 8 and 6 - QPSK (b) Split 8 and 7.3 - 256QAM

Figure 8: BER curves over-the-air Figure 9: End-to-end latency

e.g., via the Data Plane Development Kit (DPDK) library. This would
enable higher packet throughput and more precise scheduling.

Fronthaul overhead: The fronthaul requirements change de-
pending on the split configuration. The lower the split configuration
(i.e., split 8), the higher the demands in the fronthaul link. In this
experiment, we measure the fronthaul overhead of the different
available split configurations in HELIX. We transmit 50000 slots
and capture the received packets using Wireshark. We use 145 PRB,
which for an FFT size of 2048 corresponds to the 84% of available
subcarriers. We compare with 73 PRB, which corresponds to 42%
of subcarriers. For this experiment, we also include the overhead
caused by transmitting the channel estimation generated from the
platform. We considered the maximum possible overhead as the
size of a slot in split 8 (i.e., 120KB). The results in Fig. 10 show that
the higher the functional splitting, the lower amount of overhead
in relation to split 8. The overhead is constant at split 8 among
different number of resource elements, since we are working in the
time-domain. In addition, in split 7.2x and 8 the channel estima-
tion is implemented in the DU with no additional data to transmit.

The results show that for a high number of PRBs, the overhead is
still high for splits lower than 6. For the split 6 configuration, the
overhead is reduced 92% compared to split 8—even for the most
demanding situation where the number of resources is high and the
channel estimation is transmitted through the fronthaul interface

Split throughput: As mentioned in last section, lower splits suf-
fer from higher fronthaul bitrate. This issue can impact throughput
performance, since the fronthaul interface gets congested because
of the high overhead. We conducted a throughput analysis through
different functional splits, number of PRB and coding rate, covering
different lower and higher throughput scenarios. The results are
shown in table 1. Split 6 clearly outperforms the other split configu-
rations in any scenario. The reason is that the split 6 overhead is low
enough to be close to theoretical throughput. When the number of
PRB is low, the performance of 7.2x is closer to split 6, but when the
channel reaches its maximum capacity using 145 PRB, the through-
put does not increase at the same pace. The performance of split 8
is approximately 5 times lower than the performance in split 6. As
expected, for 256QAM modulation, the throughput performance is

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

Figure 10: Fronthaul overhead for different functional splits

approximately a factor of 4 higher, with close to 1200 Mbps for 145
PRB and rate 921/1024.

6.3 Applications
In this section, we discuss how HELIX can be used as basis for 6G
experimentation beyond the capabilities of 5G.

ISAC-ready platform: sensing is expected to be an integral
part of 6G networks where the high bandwidth can be exploited to
implement advanced sensing applications such as Human Activity
Recognition (HAR), by reusing channel measurements. This is an
application exploiting the real-time capability of HELIX, since data
collection is not constrained by on-board memory. We showcase
ISAC capability by setting up 2 HELIX nodes side by side with
28 GHz mmWave front ends. The system transmits for 20000 slots
separated by 𝑇𝑐 = 0.5 ms each. We set HELIX in split 6 mode with
channel measurements through the side info plane enabled. The
experiment consists of a person walking back and forth in front of
the HELIX nodes while the slots are being transmitted, as shown
in Fig. 11.

Collected channel frequency responses are converted to the time
domain to obtain the Channel Impulse Response (CIR) and aligned
with respect to the Line-of-Sight (LOS) path, thus preventing syn-
chronization offsets from the PSS. Once CIRs values are aligned,
we employ CFO cancellation techniques using the LOS as an an-
chor [29, 43]. This is needed because the CFO estimation from
SSB includes the effect of both static and dynamic paths (targets)
in the environment. Finally, the 𝜇-Doppler signature is computed
by Short-Time Fourier Transform (STFT) using a window size of
𝑀 = 100 samples. With these parameters, the maximummeasurable
velocity corresponds to 𝑣𝑚𝑎𝑥 = 𝑐

4·𝑓𝑐 ·𝑇𝑐 = 5.35m/s, which is enough
to sense a person at walking speed. A result of this experiment is
presented in Fig. 11, where the typical pattern of increasing and
decreasing velocity of the person walking is observed. Moreover,
we see small oscillations around the main signal, due to the arms
and legs. This experiment shows how the platform can be used for
advanced sensing applications based on channel measurements.

Scalability: 6G demands significantly more bandwidth than
5G, necessitating massively scaled-up systems. Conventional SDR-
based architectures require powerful servers and multiple USRP-
like devices with complex synchronization, posing scalability chal-
lenges. To demonstrate the scalability of HELIX, we implemented
four transmitter and receiver processing blocks on two independent
HELIX platforms. Despite a full split-6 implementation, the four
transmitters utilized only 28% of logic blocks, 12% of DSPs, and

58% of block RAM. For four receivers, the design required 48% of
logic blocks, 72% of DSPs, and 80% of block RAM, with block RAM
being the primary bottleneck, as detailed in Section 5. To further
enhance scalability, we plan to offload buffers to external DRAM.
Importantly, using two RFSoCs for independent transmitter and re-
ceiver functionalities does not affect system integration, as multiple
devices can be seamlessly instantiated within an application.

Fig. 12 illustrates the operation of four parallel transmitters with
418 MHz bandwidth each. For simplicity, the experiment used four
DACs, each configured with a different NCO frequency (300, 750,
1200, and 1650 MHz) to create a 1670 MHz composite channel.
However, a single DAC could be used to generate the four channels
by implementing the NCO in the FPGA logic and feeding the DAC
with the composite signal. By porting the design to a ZCU216 board
and leveraging external DRAM for buffering, the design could be
scaled to support up to 8 parallel channels, optimizing BRAM usage.
Thanks to the high-rate and 256QAM support, HELIX achieves
multi-Gbps throughput with split 6. Note that this experiment goes
beyond the numerologies defined in 5G-NR, positioning HELIX
at the forefront of 6G experimentation, where higher bandwidth
per user is expected. Moreover, by porting HELIX to an RFSoC
platform with a greater number of AD/DA converters —such as the
AMD Xilinx ZCU216 [4]— it becomes possible to aggregate more
channels and thereby achieve an even wider bandwidth.

Multiband: a key advantage of HELIX is its ability to seamlessly
adapt processing blocks to different numerologies using the same
FPGA resources (Section 4), by simply reconfiguring the Tx Upsam-
ple and Rx Downsampling filters. As shown in Section 5, sub-6GHz
and mmWave front ends require distinct converter configurations.
To enable multiband operation, we first consider a single imple-
mentation where traffic flows to either one frequency band or the
other. On the transmitter side, an AXI demultiplexer redirects sam-
ples from the Tx Upsample block to the DACs connected to the
mmWave or sub-6GHz front ends. On the receiver side, an AXI mul-
tiplexer selects inputs from the ADCs of either front end. Switching
between bands is extremely fast, requiring only a simple control
plane command.

The second multiband option considers the case where traffic
can be sent concurrently via multiple bands. As discussed above,
since two (or more) transmitter and receiver processing blocks can
be used concurrently, the application can easily split the traffic
between the different interfaces. Moreover, in the 4 channel cases,
it is possible to use up to 4 different frequency bands altogether,
for example, two at different frequencies in the sub-6 GHz band,
one at 24-28 GHz and another at 58-70 GHz. More combinations
are possible upon availability of front ends for other frequencies.

Acceleration Abstraction Layer (AAL): As mentioned before,
HELIX can be used to offload RAN functionality. To evaluate this,
we conduct an experiment where instead of processing the full
PHY pipeline (or some part depending on the split), the crossbar
dynamically changes the data path to route input samples coming
from the UDP socket to specific processing blocks. The processed
samples are sent back to the RAN using the same interface. This
experiments demonstrate how HELIX is able to work in the AAL
in conjunction with other platform using the same design.

We evaluate three cases of task acceleration: OFDM demodula-
tion, LDPC decoding and a part of the receiver pipeline including

HELIX: High-speed Real-Time Experimentation Platform for 6G Wireless Networks MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Table 1: Throughput in Mbps for QPSK modulation

Functional
Split

NPRB = 145 and
rate 921/1024

NPRB = 73 and
rate 921/1024

NPRB = 145 and
rate 490/1024

NPRB = 73 and
rate 490/1024

Split 6 278,91 119,45 155,16 65,12
Split 7.2x 115,36 75,10 61,49 43,49
Split 8 57,02 27,46 29,66 14,77

HELIX
Tx

HELIX
Rx

1.90 m

3.50 m

0.11 m

Figure 11: 𝜇-Doppler signature from a walking person
using channel measurements from HELIX

Figure 12: 4 aggregated channels to form a wider
1670 MHz system measured with an oscilloscope

cascaded processing blocks from OFDM demodulator to LDPC de-
coder. We separate the latency introduced by processing blocks
from that of the fronthaul interface and measure throughput at
the output of the blocks. For OFDM demodulation, we analyze the
effect of different number of PRBs. As shown in Fig.13a, total la-
tency remains constant, with the fronthaul interface contributing
more than 85% of it. However, Fig.13b shows that the throughput
increases because of the higher spectral efficiency. For decoding
acceleration, we examine the impact of the number of LDPC itera-
tions. Fig.14 shows that higher numbers of iterations worsen the
performance while increasing the coding rate and a higher number
of PRBs improves throughput but increases latency. Finally, we
analyze offloading of cascaded processing blocks at the receiver,
sending IQ samples to the OFDM demodulator all the way to the
LDPC decoder, offloading the decoded bits through our interface,
with equal number of the LDPC iterations. Fig.15 shows that this
setup has the highest latency and lower throughput due to the
high fronthaul overhead required to send the IQ samples to the
OFDM demodulator block. All experiments show that the fronthaul
interface impacts the overall latency. A more optimized communi-
cation scheme (e.g., using a polling based library) could improve
the throughput and latency results.

7 RELATEDWORK
We describe related work on wireless experimentation platforms
in the categories (i) high-bandwidth, non-real-time platforms, (ii)
software-based end-to-end testbeds, and (iii) FPGA-based real-time
systems.

High-bandwidth, non-real-time platforms: The highest de-
gree of flexibility can be achieved with signal generators together
with oscilloscopes or signal analyzers. These tools allow researchers
to generate and capture arbitrary signals within the operational

limits of the equipment. However, these devices are typically used
in smaller lab setups, cannot operate in real-time, and are limited to
the physical layer. Similar SDR-based approaches are more portable
but also lack real-time 5G/6G capabilities [9, 12, 17, 18, 27].

Software-based end-to-end testbeds: There are several soft-
ware-based implementations for CPUs (e.g., srsRAN [11], OAI [15],
and Amarisoft [3]) as well as Nvidia’s Aerial [16] implementation
for GPUs. While these platforms are flexible and relatively easy to
customize, the possibility to integrate them in end-to-end systems
comes with limitations in terms of performance (only up to 100MHz
of bandwidth) and the more fundamental issue of fronthaul data
rates, stemming from the need to transfer IQ samples to the CPU
or GPU. Recognizing these challenges Borromeo et al. [7] present
an implementation that offloads low-PHY functions to an FPGA,
showing a reduction in processing time, which is partially offset
by the memory transfer between FPGA and CPU. Furthermore,
open-source initiatives such as srsRAN [11] or OAI [15] provide
software-based solutions for 5G. srsRAN supports subcarrier spac-
ing of 15 and 30 KHz for FR1 but does not support FR2, while
OAI supports FR2 with 120 kHz subcarrier spacing and 100 MHz
of bandwidth. Other projects incorporate hardware accelerators
to enhance performance. Savannah [30] integrates an ASIC accel-
erator for LDPC decoding [22] together with software baseband
processing to achieve 100 MHz of bandwidth and 2x2 MIMO in FR2.

FPGA-based real-time systems: Considering the trade-offs of
the discussed platforms, there is an increasing interest in FPGA-
based real-time implementations [6, 14, 18, 41]. Given the challenge
to implement real-time systems, existing projects have limitations,
i.e., do not support the full bandwidth [6, 41] or focus on spe-
cific physical layer functionality like beam tracking [14, 18]. With
HELIX, we present the next generation in this line of research,
releasing a flexible platform that supports both sub-6 GHz and

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

(a) Latency (b) Throughput

Figure 13: FFT hardware acceleration.

(a) Interface latency (dark colors) and
Processing latency (light colors)

(b) Throughput

Figure 14: LDPC hardware acceleration.

(a) Latency (b) Throughput

Figure 15: FFT - Equalization - Phase tracking - Demapping -
LDPC acceleration.

mmWave bands with a bandwidth of 417 MHz, data rates up to
1200 Mbps, and end-to-end latencies as low as 500 𝜇s.

8 DISCUSSION
Integration with high-level applications: A key contribution

of HELIX is its incorporation of the Low and High PHY layer. In
the context of O-RAN, this allows the RU to handle the PHY layer
and connect to the DU at split 6. However, this presents a challenge
as there are no standardized interfaces between this two units for
this split, making integration more complex. HELIX addresses this
challenge providing a simple fronthaul interface and library to
facilitate integration within high-level applications. As mentioned
in section 3.4, the radio parent class encapsulates all streaming
and configuration functionalities. With some modifications, it could
be integrated within an O-RAN implementation while replacing
the legacy PHY layer. The DU can directly send and receive MAC
layer user data and configure PHY layer parameters through a
UDP socket over a 10GbE interface by solely using the library’s
provided functions. Complementarily, HELIX can be integrated into
an O-RAN as part of the AAL, offloading computationally intensive
task such as iFFT/FFT or LDPC encoding/decoding, as shown in
Section 6.3.

Timing synchronization: Mobile network deployments re-
quire tight synchronization to coordinate between cells, enable
time-sensitive network operations, and comply with 5G require-
ments. We plan to incorporate an external reference clock (e.g.,
GPS or Network Time Protocol (NTP)) to HELIX to enhance the
platform’s synchronization capabilities.

Control, broadcasting and random access channels: Cur-
rently, the testbed implements only the Physical Downlink Shared
Channel (PDSCH) and Physical Uplink Shared Channel (PUSCH),

while other physical channels such as broadcasting, control, and
random access are not yet fully supported. Future work will focus
on incorporating these missing components to enhance the plat-
form’s capabilities and enable more standard-compliant features.

Integration with the O-RAN Intelligent Controller (RIC):
the RIC is a software-defined component that enables real-time
network monitoring and optimization of the RAN. It relies on E2
interfaces to communicate with other network components. Al-
though HELIX does not implement any E2 agent, its flexible inter-
face together with real-time side-information from the PHY layer
can be the foundation for future integration. HELIX’s simple and
fast interface provides real-time PHY layer parameters and enables
closed-loop operations to control the operation of the network, e.g.,
for adaptive resource allocation or beam training.

9 CONCLUSIONS AND FUTUREWORK
In this work, we presented HELIX, a wireless 6G-ready experimen-
tation platform that fills the gap between high bandwidth and real-
time features. The platform integrates dynamic functional splitting,
reconfigurable numerologies to operate in multiple bands, seam-
less integration with high-level applications and scalability. We
showcased the capabilities of the platform through comprehensive
evaluation in different bands, demonstrating end-to-end latencies as
low as 500 𝜇s and >1 Gbps data rates, alongside advanced wireless
experimentation such as ISAC.

For future work, we plan to extend the capabilities of the system
by integrating it with O-RAN software such as srsRAN or OAI,
addressing the synchronization between the RU and the network.
In addition, we intend to explore even higher bandwidth config-
urations by synchronizing multiple FPGAs, and by expanding to
further 6G applications.

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Hori-
zon Europe research and innovation programme under the SNS-
JU through Grant Agreement No. 101192521 (MultiX) and under
the Marie Skłodowska-Curie Actions (UNITE), Grant Agreement
No. 101129618. It has also been supported by the Comunidad de
Madrid through the DISCO6G-CM project (TEC-2024/COM-360)
and TUCAN6-CM (TEC-2024/COM-460), funded under ORDEN
5696/2024. This work has also been funded by project PID2022-
136769NB-I00 (ELSA) funded byMCIN/AEI /10.13039/501100011033
/ FEDER, UE.

HELIX: High-speed Real-Time Experimentation Platform for 6G Wireless Networks MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

REFERENCES
[1] 3rd Generation Partnership Project (3GPP). 2023. NR; Physical channels and

modulation. Technical Report TS 38.211. Technical Specification Group Radio
Access Network. Available at: https://www.3gpp.org/ftp/.

[2] O-RAN Alliance. 2021. Control, User and Synchronization Plane Specification.
O-RAN-WG4.CUS.0-v02. Working Group 4.

[3] Amarisoft. 2024. gNodeB Technical Specification. https://www.amarisoft.com/
public-and-private-networks/solutions/ Accessed: 2024-12-09.

[4] AMD. 2021. Zynq UltraScale+ RFSoC ZCU216 Evaluation Kit. https://www.amd.
com/en/products/adaptive-socs-and-fpgas/evaluation-boards/zcu216.html Ac-
cessed: 2025-03-28.

[5] Fatih Aslan, George Iosifidis, Jose A. Ayala-Romero, Andres Garcia-Saavedra,
and Xavier Costa-Perez. 2024. Fair Resource Allocation in Virtualized O-RAN
Platforms. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 8, 1 (2024), 17:1–17:34. https://doi.org/10.1145/3639043

[6] James Bishop, Jean-Marc Chareau, and Fausto Bonavitacola. 2018. Implement-
ing 5G NR Features in FPGA. In 2018 European Conference on Networks and
Communications (EuCNC). 373–9. https://doi.org/10.1109/EuCNC.2018.8443214

[7] Justine Cris Borromeo, Koteswararao Kondepu, Nicola Andriolli, and Luca
Valcarenghi. 2022. FPGA-accelerated SmartNIC for supporting 5G virtual-
ized Radio Access Network. Computer Networks 210 (2022), 108931. https:
//doi.org/10.1016/j.comnet.2022.108931

[8] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu. 2005. Reduced-
complexity decoding of LDPC codes. IEEE Transactions on Communications 53, 8
(2005), 1288–1299. https://doi.org/10.1109/TCOMM.2005.852852

[9] Maximilian Engelhardt, Sebastian Giehl, Michael Schubert, Alexander Ihlow,
Christian Schneider, Alexander Ebert, Markus Landmann, Giovanni del Galdo,
and Carsten Andrich. 2024. Accelerating Innovation in 6G Research: Real-Time
Capable SDR System Architecture for Rapid Prototyping. IEEE Access 12 (2024),
118718–118732. https://doi.org/10.1109/ACCESS.2024.3447884

[10] Alex Forencich. [n. d.]. Verilog Ethernet. https://github.com/alexforencich/
verilog-ethernet

[11] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Serrano,
Cristina Cano, and Doug J. Leith. 2016. SrsLTE: An Open-Source Platform for LTE
Evolution and Experimentation. In Proceedings of the Tenth ACM International
Workshop on Wireless Network Testbeds, Experimental Evaluation, and Characteri-
zation (New York City, New York) (WiNTECH ’16). Association for Computing
Machinery, New York, NY, USA, 25–32. https://doi.org/10.1145/2980159.2980163

[12] Khandaker Foysal Haque, Francesca Meneghello, K M Rumman, and Francesco
Restuccia. 2024. m3MIMO: An 8×8 mmWave Multi-User MIMO Testbed for
Wireless Research. In Proceedings of the 30th Annual International Conference on
Mobile Computing and Networking (Washington D.C., DC, USA) (ACM MobiCom
’24). Association for Computing Machinery, New York, NY, USA, 1922–1929.
https://doi.org/10.1145/3636534.3697321

[13] Xilinx Inc. 2024. SD-FEC: Soft Decision Forward Error Correction. https://www.
xilinx.com/products/intellectual-property/sd-fec.html. Accessed: 2024-12-07.

[14] Ish Kumar Jain, Raghav Subbaraman, Tejas Harekrishna Sadarahalli, Xiangwei
Shao, Hou-Wei Lin, and Dinesh Bharadia. 2020. MMobile: Building a MmWave
Testbed to Evaluate and Address Mobility Effects. In Proceedings of the 4th ACM
Workshop on Millimeter-Wave Networks and Sensing Systems (London, United
Kingdom) (mmNets’20). Association for Computing Machinery, New York, NY,
USA, Article 4, 6 pages. https://doi.org/10.1145/3412060.3418433

[15] Florian Kaltenberger, Aloizio P. Silva, Abhimanyu Gosain, Luhan Wang, and
Tien-Thinh Nguyen. 2020. OpenAirInterface: Democratizing innovation in the
5G Era. Computer Networks 176 (2020), 107284. https://doi.org/10.1016/j.comnet.
2020.107284

[16] Anupa Kelkar and Chris Dick. 2021. NVIDIAAerial GPUHosted AI-on-5G. In 2021
IEEE 4th 5G World Forum (5GWF). 64–69. https://doi.org/10.1109/5GWF52925.
2021.00019

[17] Jesus Omar Lacruz, Dolores Garcia, Pablo Jiménez Mateo, Joan Palacios, and Joerg
Widmer. 2020. Mm-FLEX: An Open Platform for Millimeter-Wave Mobile Full-
Bandwidth Experimentation. In Proceedings of the 18th International Conference
on Mobile Systems, Applications, and Services (Toronto, Ontario, Canada) (MobiSys
’20). Association for Computing Machinery, New York, NY, USA, 1–13. https:
//doi.org/10.1145/3386901.3389034

[18] Jesus O. Lacruz, Rafael Ruiz Ortiz, and Joerg Widmer. 2021. A Real-Time
Experimentation Platform for Sub-6 GHz and Millimeter-Wave MIMO Sys-
tems. In Proceedings of the 19th Annual International Conference on Mobile Sys-
tems, Applications, and Services (Virtual Event, Wisconsin) (MobiSys ’21). As-
sociation for Computing Machinery, New York, NY, USA, 427–439. https:
//doi.org/10.1145/3458864.3466868

[19] Line M. P. Larsen, Aleksandra Checko, and Henrik L. Christiansen. 2019. A
Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks.
IEEE Communications Surveys & Tutorials 21, 1 (2019), 146–172. https://doi.org/
10.1109/COMST.2018.2868805

[20] Fan Liu, Yuanhao Cui, Christos Masouros, Jie Xu, Tony Xiao Han, Yonina C.
Eldar, and Stefano Buzzi. 2022. Integrated Sensing and Communications: Toward

Dual-Functional Wireless Networks for 6G and Beyond. IEEE Journal on Selected
Areas in Communications 40, 6 (2022), 1728–1767. https://doi.org/10.1109/JSAC.
2022.3156632

[21] Fan Liu, Christos Masouros, Athina P. Petropulu, Hugh Griffiths, and Lajos Hanzo.
2020. Joint Radar and Communication Design: Applications, State-of-the-Art, and
the Road Ahead. IEEE Transactions on Communications 68, 6 (2020), 3834–3862.
https://doi.org/10.1109/TCOMM.2020.2973976

[22] Silicom Ltd. [n. d.]. ACC 100 FEC Accelerator. https://www.silicom-usa.com/wp-
content/uploads/2023/09/Lisbon-P2-ACC100-FEC-Accelerator-Extended-
temp-1v1.pdf

[23] Juquan Mao, Mahmoud Alfa Abdullahi, Pei Xiao, and Aijun Cao. 2016. A low
complexity 256QAM soft demapper for 5G mobile system. In 2016 European
Conference on Networks and Communications (EuCNC). 16–21. https://doi.org/10.
1109/EuCNC.2016.7560996

[24] MathWorks. [n. d.]. NR HDL Cell Search and MIB Recovery Reference Applica-
tion. https://www.mathworks.com/help/wireless-hdl/ug/nr-hdl-cell-search.html.
Accessed: 2024-11-22.

[25] MathWorks. 2024. nrChannelEstimate. https://es.mathworks.com/help/5g/ref/
nrchannelestimate.html. Accessed: 2024-12-09.

[26] 3GPP Technical Specification Group Radio Access Network. 2020. NR; Physical
channels and modulation. Technical Report 38.212. 3rd Generation Partnership
Project (3GPP). https://www.3gpp.org/DynaReport/38212.htm

[27] Benjamin Nuss, Patrick Groeschel, Johannes Pfau, Juergen Becker, Martin Vossiek,
and Thomas Zwick. 2022. Broadband MIMO Testbed for the Development and
Research on 6G. In 27th European Wireless Conference.

[28] Benetel Olli Andersson. 2021. Functional Splits: The Foundation of an Open 5G
RAN. 5G Technology World (May 2021). https://www.5gtechnologyworld.com/
functional-splits-the-foundation-of-an-open-5g-ran/ Accessed: 2024-12-07.

[29] Jacopo Pegoraro, Jesus O. Lacruz, Tommy Azzino, Marco Mezzavilla, Michele
Rossi, JoergWidmer, and Sundeep Rangan. 2024. JUMP: Joint Communication and
Sensing With Unsynchronized Transceivers Made Practical. IEEE Transactions
on Wireless Communications 23, 8 (2024), 9759–9775. https://doi.org/10.1109/
TWC.2024.3365853

[30] Zhenzhou Qi, Chung-Hsuan Tung, Anuj Kalia, and Tingjun Chen. 2024. Savan-
nah: Efficient mmWave Baseband Processing with Minimal and Heterogeneous
Resources. In Proceedings of the 30th Annual International Conference on Mo-
bile Computing and Networking (Washington D.C., DC, USA) (ACM MobiCom
’24). Association for Computing Machinery, New York, NY, USA, 1500–1514.
https://doi.org/10.1145/3636534.3690707

[31] S. Rangan. 2024. Wireless Communications Repository. https://github.com/
sdrangan/wirelesscomm Accessed: 2024-11-22.

[32] Ettus Research. 2023. USRP Hardware Driver (UHD). National Instruments.
Accessed: 2023-12-08.

[33] Sivers Semiconductors. 2024. Evaluation Kit EVK02001. https://www.sivers-
semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-
products/evaluation-kits/evaluation-kit-evk02001/ Accessed: 2024-12-09.

[34] Sivers Semiconductors. 2024. Evaluation Kit EVK06006. https://www.sivers-
semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-
products/evaluation-kits/evaluation-kit-evk06002/ Accessed: 2024-12-09.

[35] Akram Shafie, Nan Yang, Chong Han, Josep Miquel Jornet, Markku Juntti, and
Thomas Kürner. 2023. Terahertz Communications for 6G and Beyond Wireless
Networks: Challenges, Key Advancements, and Opportunities. IEEE Network 37,
3 (2023), 162–169. https://doi.org/10.1109/MNET.118.2200057

[36] Changyang She, Cunhua Pan, Trung Q. Duong, Tony Q. S. Quek, Robert Schober,
Meryem Simsek, and Peiying Zhu. 2023. Guest Editorial xURLLC in 6G: Next
Generation Ultra-Reliable and Low-Latency Communications. IEEE Journal on
Selected Areas in Communications 41, 7 (2023), 1963–1968. https://doi.org/10.
1109/JSAC.2023.3282543

[37] Christian Sturm and Werner Wiesbeck. 2011. Waveform Design and Signal
Processing Aspects for Fusion of Wireless Communications and Radar Sensing.
Proc. IEEE 99, 7 (2011), 1236–1259. https://doi.org/10.1109/JPROC.2011.2131110

[38] Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. 2007. Kernel Regression for
Image Processing and Reconstruction. IEEE Transactions on Image Processing 16,
2 (2007), 349–366. https://doi.org/10.1109/TIP.2006.888330

[39] J. Valls, T. Sansaloni, A. Perez-Pascual, V. Torres, and V. Almenar. 2006. The use
of CORDIC in software defined radios: a tutorial. IEEE Communications Magazine
44, 9 (2006), 46–50. https://doi.org/10.1109/MCOM.2006.1705978

[40] Cheng-Xiang Wang, Xiaohu You, Xiqi Gao, Xiuming Zhu, Zixin Li, Chuan Zhang,
Haiming Wang, Yongming Huang, Yunfei Chen, Harald Haas, John S. Thompson,
Erik G. Larsson, Marco Di Renzo, Wen Tong, Peiying Zhu, Xuemin Shen, H. Vin-
cent Poor, and Lajos Hanzo. 2023. On the Road to 6G: Visions, Requirements,
Key Technologies, and Testbeds. IEEE Communications Surveys & Tutorials 25, 2
(2023), 905–974. https://doi.org/10.1109/COMST.2023.3249835

[41] KangWang, Xi Yang, Xiao Li, Chao-Kai Went, and Shi Jin. 2019. SDR Implementa-
tion of an End-to-End mmWave Testbed Based on Phased Antenna Array. In 2019
11th International Conference on Wireless Communications and Signal Processing
(WCSP). 1–6. https://doi.org/10.1109/WCSP.2019.8928067

https://www.amarisoft.com/public-and-private-networks/solutions/
https://www.amarisoft.com/public-and-private-networks/solutions/
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/zcu216.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/evaluation-boards/zcu216.html
https://doi.org/10.1145/3639043
https://doi.org/10.1109/EuCNC.2018.8443214
https://doi.org/10.1016/j.comnet.2022.108931
https://doi.org/10.1016/j.comnet.2022.108931
https://doi.org/10.1109/TCOMM.2005.852852
https://doi.org/10.1109/ACCESS.2024.3447884
https://github.com/alexforencich/verilog-ethernet
https://github.com/alexforencich/verilog-ethernet
https://doi.org/10.1145/2980159.2980163
https://doi.org/10.1145/3636534.3697321
https://www.xilinx.com/products/intellectual-property/sd-fec.html
https://www.xilinx.com/products/intellectual-property/sd-fec.html
https://doi.org/10.1145/3412060.3418433
https://doi.org/10.1016/j.comnet.2020.107284
https://doi.org/10.1016/j.comnet.2020.107284
https://doi.org/10.1109/5GWF52925.2021.00019
https://doi.org/10.1109/5GWF52925.2021.00019
https://doi.org/10.1145/3386901.3389034
https://doi.org/10.1145/3386901.3389034
https://doi.org/10.1145/3458864.3466868
https://doi.org/10.1145/3458864.3466868
https://doi.org/10.1109/COMST.2018.2868805
https://doi.org/10.1109/COMST.2018.2868805
https://doi.org/10.1109/JSAC.2022.3156632
https://doi.org/10.1109/JSAC.2022.3156632
https://doi.org/10.1109/TCOMM.2020.2973976
https://www.silicom-usa.com/wp-content/uploads/2023/09/Lisbon-P2-ACC100-FEC-Accelerator-Extended-temp-1v1.pdf
https://www.silicom-usa.com/wp-content/uploads/2023/09/Lisbon-P2-ACC100-FEC-Accelerator-Extended-temp-1v1.pdf
https://www.silicom-usa.com/wp-content/uploads/2023/09/Lisbon-P2-ACC100-FEC-Accelerator-Extended-temp-1v1.pdf
https://doi.org/10.1109/EuCNC.2016.7560996
https://doi.org/10.1109/EuCNC.2016.7560996
https://www.mathworks.com/help/wireless-hdl/ug/nr-hdl-cell-search.html
https://es.mathworks.com/help/5g/ref/nrchannelestimate.html
https://es.mathworks.com/help/5g/ref/nrchannelestimate.html
https://www.3gpp.org/DynaReport/38212.htm
https://www.5gtechnologyworld.com/functional-splits-the-foundation-of-an-open-5g-ran/
https://www.5gtechnologyworld.com/functional-splits-the-foundation-of-an-open-5g-ran/
https://doi.org/10.1109/TWC.2024.3365853
https://doi.org/10.1109/TWC.2024.3365853
https://doi.org/10.1145/3636534.3690707
https://github.com/sdrangan/wirelesscomm
https://github.com/sdrangan/wirelesscomm
https://www.sivers-semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-products/evaluation-kits/evaluation-kit-evk02001/
https://www.sivers-semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-products/evaluation-kits/evaluation-kit-evk02001/
https://www.sivers-semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-products/evaluation-kits/evaluation-kit-evk02001/
https://www.sivers-semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-products/evaluation-kits/evaluation-kit-evk06002/
https://www.sivers-semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-products/evaluation-kits/evaluation-kit-evk06002/
https://www.sivers-semiconductors.com/5g-millimeter-wave-mmwave-and-satcom/wireless-products/evaluation-kits/evaluation-kit-evk06002/
https://doi.org/10.1109/MNET.118.2200057
https://doi.org/10.1109/JSAC.2023.3282543
https://doi.org/10.1109/JSAC.2023.3282543
https://doi.org/10.1109/JPROC.2011.2131110
https://doi.org/10.1109/TIP.2006.888330
https://doi.org/10.1109/MCOM.2006.1705978
https://doi.org/10.1109/COMST.2023.3249835
https://doi.org/10.1109/WCSP.2019.8928067

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA R. Ruiz, J.O. Lacruz, B. Bloessl, M. Hollick and J. Widmer

[42] ZhongxiangWei, Fan Liu, Christos Masouros, Nanchi Su, and Athina P. Petropulu.
2022. Toward Multi-Functional 6G Wireless Networks: Integrating Sensing,
Communication, and Security. IEEE Communications Magazine 60, 4 (2022),
65–71. https://doi.org/10.1109/MCOM.002.2100972

[43] Kai Wu, Jacopo Pegoraro, Francesca Meneghello, J. Andrew Zhang, Jesus O.
Lacruz, Joerg Widmer, Francesco Restuccia, Michele Rossi, Xiaojing Huang,
Daqing Zhang, Giuseppe Caire, and Y. Jay Guo. 2024. Sensing in Bistatic ISAC
Systems With Clock Asynchronism: A signal processing perspective [Special
Issue on Signal Processing for the Integrated Sensing and Communications
Revolution]. IEEE Signal Processing Magazine 41, 5 (2024), 31–43. https://doi.org/
10.1109/MSP.2024.3418725

[44] Xilinx. 2024. AXI4-Stream Interconnect Product Page. https://www.xilinx.com/
products/intellectual-property/axi4-stream_interconnect.html. Accessed: 2024-
12-08.

[45] Xilinx. 2024. RFSoC ZCU111. https://www.xilinx.com/products/boards-and-
kits/zcu111.html Accessed: 2024-12-09.

[46] Xilinx. 2024. RFSoC ZCU208. https://www.xilinx.com/products/boards-and-
kits/zcu208.html Accessed: 2024-12-09.

[47] Ali Zaidi, Fredrik Athley, Jonas Medbo, Ulf Gustavsson, Giuseppe Durisi, and
Xiaoming Chen. 2018. 5G Physical Layer: Principles, Models and Technology
Components. Academic Press. https://doi.org/10.1016/C2016-0-04818-0

[48] Zhengquan Zhang, Yue Xiao, Zheng Ma, Ming Xiao, Zhiguo Ding, Xianfu Lei,
George K. Karagiannidis, and Pingzhi Fan. 2019. 6G Wireless Networks: Vision,
Requirements, Architecture, and Key Technologies. IEEE Vehicular Technology
Magazine 14, 3 (2019), 28–41. https://doi.org/10.1109/MVT.2019.2921208

https://doi.org/10.1109/MCOM.002.2100972
https://doi.org/10.1109/MSP.2024.3418725
https://doi.org/10.1109/MSP.2024.3418725
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/intellectual-property/axi4-stream_interconnect.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu111.html
https://www.xilinx.com/products/boards-and-kits/zcu208.html
https://www.xilinx.com/products/boards-and-kits/zcu208.html
https://doi.org/10.1016/C2016-0-04818-0
https://doi.org/10.1109/MVT.2019.2921208

	Abstract
	1 Introduction
	2 5G Architecture Primer
	2.1 O-RAN and Functional splitting
	2.2 Fronthaul interface

	3 HELIX Top-Level Architecture
	3.1 Custom fronthaul interface
	3.2 Control and Stream Manager
	3.3 Crossbar for Flexible Splitting
	3.4 Interface Library

	4 Processing blocks
	4.1 Receiver blocks
	4.2 Transmitter blocks

	5 Implementation
	6 Evaluation
	6.1 Microbenchmarks
	6.2 System level evaluation
	6.3 Applications

	7 Related Work
	8 Discussion
	9 Conclusions and Future Work
	References

